Designing Data-Intensive Applications

Part 1: Storage and Retrieval

(Which really is chapter 3)

Designing
Data-Intensive @
App]icatlons S

Technology is a powerful force in our society. Data, software,
and communication can be used for bad: to entrench unfair
power structures, to undermine human rights, and to protect
vested interests. But they can also be used for good: to make
underrepresented people’s voices heard, to create
opportunities for everyone, and to avert disasters. This book is
dedicated to everyone working toward the good.

This book has over 800 references to articles, blog posts, talks,
documentation, and more...

Turning the database inside-out

https://martin.kleppmann.com/2015/11/05/database-inside-out-at-
oredev.html

BREDEV -
DEVELOPER COMERENCE (S5

www.oredev.org

X=S|¥=8 |X=6 |X=3Y=9 |

Martin Kleppmann —

otreams as the team interface

https://martin.kleppmann.com/2015/11/05/database-inside-out-at-oredev.html

CAP is broken, and it's time to replace it

A Critique of the CAP Theorem

Martin Kleppmann

Abstract

a consistency model describes what values are allowed

wy to be retumed by operations accessing the storage, de-
iy The CAFP Theorem is a frequently cited impossibility pending on ofier operations exccwied previously or
o rt.s.ul.l in distritated s.}'s.lcnu... expecially among Nof (L concumently, nd the return values of those cperations,
o | distributed databascs, In this paper we survey zome S e : . :
. R s - A Similar concems arise in the design of multipm-

[= W of the confusion about the meaning of CAP, includ-) = tich i cally di
a4 ing inconsistencies and ambiguities in its definitions, tcm wa:lP _m' “I 100 m. g!:ogl.':l'phlu..) Is;,
w2 and we highlight some problems in its formalization.] d, i dn;\- mﬂ:-s:niu:um :‘n?:.l?.lcmwcws;:
o CAP iz often interpreted as proof that eventually con- ::IH::H‘H; c' GIE d by mndc‘:-n]i'_P[Jw;:l:O]::cz-:cM:
—_— sistent databases have betier availability propertics than i S i e .

strongly consistent databases; although there is some For example, xB6 microprmocessors provide a kevel of
— h in this, we show that mare careful reasoning is consistency that is weaker than sequential, bt stron ger
() s : oo than causal consistency [48]. However, inthis paper we

required. These problems cast doubt on the wiility of . i
C‘ CAP as a tool for reazoning about trade-offs in practi- focum n'm'..'mc.nlmm ki d|s.1.nh1.|1l.cd s.ysu:msﬂu.l sl
o cal systems. As alternative to C AP, we propose a delay- erte partial fai I“_T“ and uniz Il'ﬂ’_lc m.:lwr.k Im.k.s...
o sengitiviry framework, which analyzes the sensitivity of A strong consistency model like I'“"‘:"'f"‘b'“‘ﬁ pro-

operation lalency to network delay, and which may help vides .'m e k] i puarantee: " . all
('_‘ | practitioners reason about the trade-ofts between con- opertions behave as if they executed atomically on a
.—: sistency guarntees and olemnce of netwark faults, single copy of the data. However, this guamntee comes
:.,\' at the cost of reduced performance [6] and fault toler-
r‘f"‘ ance [22] compared to weaker consistency models. In
l,—-: 1 Background particular, as we discuss in this paper, algorithms that

1509.0

v

Irx

e

Replicated databases maintain copies of the same data
onmultiple nodes, potentially in dispamte geographical
locations, in order to tolerate faults (failures of nodes or
communication links) and to provide lower laency to
users (requests can be served by a nearby site). How-
ever, implementing reliable, fault-tolerant applications
in a distributed system is difficult: if there are multi-
ple copies of the data on different modes, they may be
inconsistent with each other, and an application that is
not designed to handle such inconsistencies may pro-
duce incomect results.

In omder to provide a simpler programming maodel
o application developers, the designers of distribated
data systems have explored variows consistency guar-
antees that can be implemented by the database infras-
tructure, such as linearizability |31, sequential consis-
tency [38], causal consisiency [—1] and pipelined RAM
{PRAM] [42]. When multiple processes execute operi-
tions ona shared storage abstraction such as a database,

ensure stmonger consistency properties among replicas
are more sensitive w0 message delays and faulis in the
network., Many real computer networks are prone to
unbounded delays and lost messages [10], making the
fault volerance of distibuted consistency algorithms an
important issue in practice.

A petwork partition is a particular kind of commauni-
cation fault that splits the network into subsets of nodes
such that nodes in one subset cannot communicate with
nodes in mnother. Az long as the partition exists, amy
data modifications made in one subset of nodes cannot
he visible to nodes in another subset, since all messages
between them are lost. Thus, an algorithm that main-
tains the illusion of a single copy may have to delay
operations until the partition is healed, to avoid the risk
of intmducing inconsistent data in ditferent subsets of
nodes.

This trade-off was aleady known in the 1970s LH

23,32,.40], but it was rediscovered in the early 2000s,

when the web's growing commemrial popularity made

Data-intensive = data is its primary challenge

e Quantity of data
o Complexity of data
e Speed of change

Opposed to compute-intensive where CPU cycles are the bottleneck

[...]the term “Big Data” is so overused and underdefined that it
is not useful in a serious engineering discussion.

Direction

e Companies need to handle huge volumes of data traffic

CPU clock speeds are barely increasing

Multi-core processors are standard

Networks are getting faster

Services are expected to be highly available

Chapter 3: Storage and Retrieval

A database needs to do two things

e when you give it some data, it should store the data

e when you ask it again later, it should give the data back to you

World’s simplest database, implemented as two Bash functions

¥

}

#!/bin/bash
db_set () {

echo "$1,%2" >> database

db_get () {

grep "7%$1," database | sed -e "s/"%1,//"

| tail -n 1

> source db.sh; db_set hello world
> cat database

hello,world

> source db.sh; db_set hello foo

> cat database

hello,world

hello, foo

> source db.sh; db_get hello

foo

Good

e Performance - appending to file is very efficient
o Using a log (append-only) internally is common

Bad

o Update doesn't remove old data

e Read scans entire database
o Double the number of records, twice as slow

How do we avoid running out of disk space?

e Break the log into segments of a certain size
e Make subsequent writes to a new segment file

e Perform compaction on the segments

Data file segment

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081

r—
purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082

Y

@ Compaction process

Compacted segment

>{ | yawn:511 mew: 1082 | purr: 2108

Compaction

Often makes segments much smaller (key is overwritten)

Can be done on multiple segments at once

Segments are never modified

Merging and compactation can run on a background thread

After merging, point to new segment, delete olds segments

Speed up reads: Index

Index

o Additional structure derived from the primary data

e Add /remove indexes doesn't affect the content

Only affects the performance of queries

Well-chosen indexes speed up read quries

Usually slows down writes - why not enabled by default
e Requires knowledge about application's typical query patterns
e Cost / benefit

Hash Indexes

o Keep an in-memory hash map where every key is mapped to a
byte offset in the data file

key byte offset | In-memory hash map

123456 0
Log-structured file on disk

/ / (each box is one byte)

:/1723456,_{"'na\me":"Londo\n","attra
ction’ﬁ:["Big Ben","i.ondon E y e
"\]}\nYZ,{"na\me":"San Fr ancisco?"
/,\"attractiqkns":["Golden G a t e B

ridge ™ 1 }\n

Hash index

Sounds simplistic but is a viable approach

Essentially what Bitcask (default Riak storage engine) is doing

Offers high-performance read and writes

Suited when the value for each key is updated frequently

Requires that keys fit into the available RAM

Index & compaction

e Each segment has its own in-memory hash map
o Mapping key to offset

On lookup, check the most recent segment's hash map
o |f not present, pick the second most recent (and so on)

Merging process keeps the number of segments small

Lookup doesn't need to check many hash maps

Improvements

e File format
o Binary format is faster and simpler

Deletions
o Special "tombstone" record

Crash recovery (in-memory hash map is lost)
o Re-building is possible but slow

o Bitcask store a snapshot on disk

Partially written records
o Bitcask include checksum

e Concurrency control
o Common to have one writer thread

Good things

e Appending and segment merging are sequential write operations
o Much faster than random writes, especially on spinning-
disk
o To some extent preferable on SSD (see book)
e Merging old segments avoid data files getting fragmented over
time

e Immutable is good - no worries about crash during writes

Problems

e Hash map must fit into memory
o Hash map on disk is difficult to make performant

e Range queries are not efficient
o Can't find people between age > 20 and < 50

o Every key must be looked up in hash map

Sorted String Tables & LSM-Trees

(SSTables)

Simple change

Require that the sequence of key-value pairs is sorted by key

Mergesort

handbag: 8786 | handful: 40308 | handicap: 65995 | handkerchief: 16324 %

S

[handlebars: 3869 | handprinted: 11150 >

v

™

handcuffs: 2729 | handful: 42307 | handicap: 67884 | handiwork: 16912 %

S

(handkerchief: 20952 | handprinted: 15725 o

(V)

o

handful: 44662 | handicap: 70836 | handiwork: 45521 | handlebars: 3869 g

S

r handoff: 5741 | handprinted: 33632 %

) 4 v
L+ Compaction and merging process

handbag: 8786 | handcuffs: 2729 | handful: 44662 | handicap: 70836 :

handiwork: 45521 | handkerchief: 20952 | handlebars: 3869 | handoff: 5741 %

(@)]

handprinted: 33632 %

e Copy the "lowest" key

e If identical - keep the value from the most recent segment

Find by key

Sparse index Sorted segment file (SSTable) on disk
in memory b

......... hand: 91541
key byte offset

handbag: 8786 | handcuffs: 2729 | handful: 44662

hammock 100491 ¢
handbag 102134
handsome 104667
hangout 106812

handicap: 70836 | handiwork: 45521 | handkerchief: 20952

handlebars: 3869 | handoff: 5741 | handprinted: 33632

compressible block

handsome: 86478 | handwaving: 44005 | handwriting: 22846

.........

e handiwork has unknown exact offset, but must be between
handbag and handsome

e Jumpto handbag and scan until found (or not)

e Still need in-memory index but it can be small & sparse
o One key for every few kb (scanned quickly)

Improve scan on read request

e Group into a block and compress it before writing to disk

e Each entry of the sparse in-memory points to the start of a
compressed block

e Saves disk space and reduces |/O bandwidth use

Constructing and maintaining SSTables

(Sorted segments)

e Maintaining on disk is possible (B-Trees later)

e Maintaining in memory is much easier
o Weel known data structures: red-black trees / AVL trees

o Insert key, get them back ordered
o Sometimes called "memtable"

o Memtable gets bigger than some threshold (few mb)
o Write it to disk as an SSTable file

o Efficient - already sorted!

o While writing to disk, start maintaining a new in memory

Running

To serve read request
o check memtable

o most recent on-disk segment

o next segment, and so on

From time to time, run compaction in the background

Data is sorted - efficient range queries

Disk writes are sequential - high write throughput

Stratergies for compaction & merge (size-tierd / leveled)

TL;DR

Size-tiered compaction, newer and smaller SSTables are
successively merged into older and larger SSTables. In leveled
compaction, the key range is split up into smaller SSTables and
older data is moved into separate “levels,” which allows the
compaction to proceed more incrementally and use less disk
space.

Problem1: on crash the memory is wiped

e Maintain separate append-only log written immediately
e Not sorted, only used on restore

 When memtable is written to an SSTable, discard log

Problem 2: looking up non-existing keys

e Check memtable and ALL segment files
o Use Bloom filters to approximate content of set

B-Trees

Log-structured indexes are gaining acceptance - but the most widely
used is the B-tree

Similarities with SSTables

o Keep key-value pairs sorted by key
o Efficient lookup and range queries

e Otherwise very different

B-trees

e Break down database into fixed-size "blocks" or "pages"
e Read or write one page at a time

e Design corresponds to underlying hardware
o Disks are also arranged in fixed size blocks

Each page can be identified using an address or location
o One page can refer to another (similar to pointers)

B-trees

“Look up user_id =251"

ref | 100 | ref | 200 | ref | 300 | ref [400 | ref | 500 | ref

o el Tt » key > 500
key < 100 T TN, Tteeeall o Tmmeeees » 400 < key < 500
,+”7100 < key < 200 200<key <300 N 000 TTtrreeseaens » 300 < key < 400
\4
ref | 111 | ref |135| ref | 152 | ref | 169 | ref | 190 | ref
] L] 1 L) 1}
A % p < ‘

4 A

ref |210| ref | 230 ref | 250 | ref | 270 | ref [290| ref

' L]
A3

A » » | A

250 <key < 270

250 val | 251 | val |252 | val [253 | val | 254 | val

B-trees

e One page is designated the root (lookup starts here)
e Page contains everal keys and references to child pages
e Each child is responsible for a continuous range of keys

o Keys between references indicate the boundaries

Updates

e Find the leaf page
e Change the value in that page and write page back to disk

e References remain valid

Add new key

» Find page whose ranges encompasses the new key and add it

e If there isn't enough free space
o Split into two half-full pages

o Update parent page

e Ensures the tree is balanced

Adding key 334

ref |310| ref | 333 | ref | 345 ref (spare space)

e 9 P

333 <key < 345
333 | val | 335 val [337 | val | 340 | val | 342 | val
After adding key 334:

ref | 310 ref [333| ref |337 | ref | 345 ref (spare)

e » P

333 <key < 337 337 < key < 345
333 | val |334| val | 335 val (spare space)
337 | val | 340 | val | 342 | val (spare space)

e B-tree with n keys always has a depth of O(log n)

e Most databases can fit into a B-tree that is three or four levels
deep, so you don't need to follow many page references

o A four-level tree of 4 KB pages with a branching factor of 500
can store up to 256 TB

Making B-trees reliable

e Basic underlying write operation is to overwrite a page with new
data

Assumed that the write does not change location of the page

e Some operation requires several pages be overwritten -
dangerous on crash
o Use write-ahead log (WAL, a.k.a. redo log)

o Append only structure, written to first before te tree itself

o Restore B-Tree with it after crash

Concurrency control (update in place)
o Use latches (lightweight locks)

o More complicated than logs

B-tree optimizations

o Copy-on-write (instead of WAL for crash recovery)

e Save space by not storing the entire key
o Only need to provide enough information to act as
boundries between key ranges

o Packing more keys into a page - high branching factor,
fewer levels

Lay out tree so leaf appear in sequential order on disk
o Difficult to maintain when the tree grows

Additional pointer (sibling references) for faster scan

e B-tree variants such as fractal trees borrow some log-structure
ideas to readuce disk seeks

Comparing B-Trees & LSM-trees

Advantages of LSM-trees

e B-tree index must write all data at least twice
o Write-ahead log (WAL)
o Actaul tree page (and perhaps again if pages are split)

e B-tree has overhead for writing an entire page at a time
o Some even overwrite twice to avoid partially updated pages
on power failure

(Although log also rewrite several times, write amplification)

Typically higher write throughput (lower write amplification)
o Mostly on magnetic drives where sequential writes are fast

Better compression (smaller files on disk)

Less fragmentation (B-tree split, page space remain unused)

Downsides of LSM-trees

e Compaction can interfear with performance (read & write)

e Response time of queries can be high (B-trees are more
predicatable)

e Disk's finite bandwidth is shared between compaction and write
e On high throughput, compaction won't keep up
o LSM-trees store multiple copies of the same key

e B-trees has "built in" support for transaction isolation because
locks can be attached to the tree

Secondary indexes

Same thing, but keys are not unigque

e Store a list of matching row identifiers

o Make key unique by appending row identifier

Storing values with the index

e Value can be either:
o the actual row (document, vertex)

o areference to the row stored elsewhere (heap file)

Heap file

e Heap file is common - no duplicate data on secondary indexes

e On update (larger value)
o Move to a new location in the heap file

o all indexes need to be updated

o or, forward pointer is added to the heap file

If extra hop to heap file is too expensive

e Use clustered index, store row with index (MySQL's InnoDB)
e Primary key is always a clustered index
e Secondary indexes refer to the primary key (not heap file)

o Why Uber switched from Postgres to MySQL
https://eng.uber.com/mysqgl-migration/

https://eng.uber.com/mysql-migration/

Covering index

e Stores some of a table's columns with the index

e Allows some queries to be answered using the index alone

Limitations

Problem 1: Multi-column indexes

SELECT x FROM restaurants
WHERE latitude > 51.4946 AND latitude < 51.5079
AND longitude > —-0.1162 AND longitude < -0.1004;

e B-tree or LSM-tree can't answer this query efficiently

e Only all resturants in a longitude range (but anywhere between
the North and South pole)

Multi-column indexes

e Single number space-filling curve (and then regular B-tree)
e Specialized spatial indexes (R-trees)
e 2D index

Problem 2: full-text search, fuzzy index

See book (references)

Or - just keep everything in memory

e RAM becoms cheapter (cost-per-gigaby argument eroded)

o Restart?
o Special hardware: battery-powered RAM

o Write a log of changes / periodic snapshot to disk

Performance not due to not reading from disk!
o Even disk based may never read from disk (cached blocks)

o Real reason: overhead of encoding in-memory data
structures to disk format

Other possibility - anti-caching, evict least recently used to disk

Non-volatile memory (NVM) - keep an eye in the future

Transaction Processing vs Analytics

Typical application

e Looks up small number of records by key (indexed)

e Records are inserted or updated based on the user's input

Applications are interactive

For end user [customer (via web application)

Latest state of data (current point in time)

Gigabytes to terabytes

Highly available / low latency

OnLine Transaction Processing (OLTP)

Data analytics

e Query needs to scan over many records

e Only reading a few columns per record

e Calculates aggregate statistics (count , sum, average, ...)
e Bulk import (Extract Transform Load - "ETL") or event stream
e For analyst / decision support / report to management

e History of events that happened over time

e Terabytes to petabytes

e Read only copy

e OnLine Analytic Processing (OLAP)

ELT - Extract Transform Load

Truck
driver

l

Vehicle route planner

transform

Data warehouse

2}
= Warehouse
¢ % Customer K
3 worker
é’ Ecommerce site Stock-keeping app
] .
4-‘ I
U’ 1
7 v |
o Sales Inventory I
— DB DB I
@) .
extract extract

é’ transform transform
g
é’\ load load / load
% : '
5 Business % : query N

analyst : g

__

Data warehousing

Historically used the same database

Separate database "data warehouse"

Commonly relational databases

SQL quite flexible for OLTP and OLAP
o Graphical query generating tools

o "Drill-down" & "slicing and dicing"

Index algorithm (previously discussed) not very good

Need storage engines optimized for analytics instead

Stars & Snowflakes

Star schema (dimensional modelin

Fact table at the center

dim_product table dim_store table

product_sk sku description brand category store_sk | state city
30 OK4012 | Bananas Freshmax | Fresh fruit 1 WA Seattle
31 - KA9511 Fish food | Aquatech | Petsupplies 2 CA | San Francisco
32 v\\AB1234 Croissant | Dealicious Bakery 3 CA Palo Alto

>
fact_sales ta\blx /

date_key | product_sk | store_sk //promotion_sk customer_sk | quantity | net_price | discount_price
140102 31 — 3 0/ NULL NULL 1 249 249
140102 69 5 19 0\ NULL 3 14.99 9.99
140102 74 3 23 \\ 191 s\ 1 4.49 3.89
140102 33 8 noe [\ s \| 4 099 099

dim_date table dim_customer table

date_key | year | month | day | weekday | is_holiday customer_sk | name | date_of_birth
\, 140101 | 2014 | jan 1 wed yes 190 Alice 1979-03-29
A140102 2014 jan 2 thu no \ 191 Bob 1961-09-02
140103 | 2014 jan 3 fri no 192 Cecil 1991-12-13
dim_promotion table
promotion_sk name ad_type coupon_type
18 New Year sale Poster NULL
I~ 19 Aquarium deal Direct mail Leaflet
20 Coffee & cake bundle | In-store sign NULL

Fact tables

e Each row represents an event

e The dimensions represent the who, what, where, when, how,
and why of the event

e Each row represent an event at a particular time (e.g. purchase)
o Maximum flexibility for analysis

e Table can become extremely large

e Some columns are attributes (e.g. price)

e Other columns are foregin key references (dimension tables)

o Typically very wide

Snowflake schema

e Dimensions are futher broken down into subdimensions
e More normalized (than star schemas)

e Harder to work with

Column-Oriented Storage

e Fact tables are often 100 columns wide

e Atypical data warehouse query only accesses 4 or 5

SELECT
dim_date.weekday, dim_product.category,
SUM(fact_sales.quantity) AS quantity_sold
FROM fact_sales
JOIN dim_date
ON fact_sales.date_key = dim_date.date_key
JOIN dim_product
ON fact_sales.product_sk = dim_product.product_sk
WHERE
dim_date.year = 2013 AND
dim_product.category IN ('Fresh fruit', 'Candy')
GROUP BY
dim_date.weekday, dim_product.category;

Column-Oriented Storage

OLTP databases usually store in row-oriented fashion

All values from one row are stored next to each other

Document databases are similar

Problematic with previous query - all data needs to be scanned

Solution: store each column together instead!

Also works in nonrelational data models

Reassemble a row is problematic (but rarely needed)

fact_sales table

date_key | product_sk | store_sk | promotion_sk | customer_sk | quantity | net_price | discount_price
140102 69 4 NULL NULL 1 13.99 13.99
140102 69 5 19 NULL 3 14.99 9.99
140102 69 5 NULL 191 1 14.99 14.99
140102 74 3 23 202 5 0.99 0.89
140103 31 2 NULL NULL 1 2.49 249
140103 31 3 NULL NULL 3 14.99 9.99
140103 31 21 123 1 49.99 39.99
140103 31 8 NULL 233 1 0.99 0.99

Columnar storage layout:
140102, 140102, 140102, 140102, 140103, 140103, 140103, 140103

date_key file contents:
product_sk file contents:
store_sk file contents:

promotion_sk file contents:
customer_sk file contents:

quantity file contents:
net_price file contents:

discount_price file contents:

69, 69, 69, 74, 31, 31, 31, 31
4,5,53,2,3,3,8

NULL, 19, NULL, 23, NULL, NULL, 21, NULL

NULL, NULL, 191, 202, NULL, NULL, 123, 233
1,3,1,51,3,1,1
13.99, 14.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99

13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Compression

Column-oriented storage often good for compression

Many repeating column values (previous image)

Save disk space

Efficient use of CPU cycles

Retail typically have billions of sale but only 100,000 products

Bitmap encoding

Sort order in column storage

e Doesn't necessarily matter - easiest to store in insert order

e Can't sort each column independently (reconstruct row)
o Must sort entire row

Queries often target date ranges - make it the sort key

Several sort keys can be used (telephone book)

Also helps compression (mostly on first sort key)

Store same data in several different ways
o Data needs replication anyway

Writing to column-oriented storage

o Writes are more difficult
o Update-in-place (B-trees) is not possible

e LSM-treees works
o Writes first go in-memory store

o Added to a sorted structured, prepared for disk write

o Doesn't matter if it's row-oriented or column-oriented

Data cubes & materialized views

Materialized aggregates

e Queries oftenuse count, sum, avg, min Or max
e Wasteful to crunch if used in many queries

o Materialized views - copy of query results written to disk
o Needs to be updated (not a "virtual view")

o Makes sense in OLAP (not in OLTP)

Data cube / OLAP cube

Grid of aggregates group by different dimensions

SELECT SUM(net_price)

FROM fact_sales

WHERE date_key = 140101

SELECT SUM(net_price)
FROM fact_sales
WHERE date_key = 140101

AND product_sk = 32 product_sk
\ 32 33 34 35 | ... total l
140101 | 149.60+)~31.01—+)-84.58 (+)-28.18 (- ==+ 40710.53
® ®
140102 | 132.18 19.78 82.91 1096 | ... 73091.28
9 ())
~ U N
J | 140103 | 196.75 0.00 12.52 64.67 | ... 54688.10
& @))
o U U
140104 | 178.36 .98 88.75 56.16 | ..., 951 2|1 .09
|
SELECT SUM(net_price) (| [. L.. | | .. | oo L L)
FROM fact_sales
WHERE product_sk = 32 total | 14967.09 | 591043 | 732885 | 688539 | . lots

Data cube [OLAP cube

e Can have many dimensions (e.g. five-dimensional hypercube)

e Hard to imagine but same principle

Advantages

e Certain queries become very fast (precomputed)

Disadvantages

o Not same flexibility as raw data
o E.g. sales from items which cost more than $100 (price isn't
a dimension)

So...

e Data warehouses typically keep as much raw data as possible

e Aggregates (data cubes) only as performance boost

Summary

OLTP

e Typically user-facing
e Hughe volume of requests
e Touch a small number of records in each query

e Requests records using some kind of key

Storage engine uses and index to find data

Disk seek time is the often the bottleneck

Data warehouse

Analytics systems are less well known

Primary used by business analysts - not end users

Lower volume of queries

Queries are typically very demanding

Column-oriented storage is increasingly popular solution

Disk bandwidth (not seek time) is bottleneck

Indexes irrelevant

Important to encode data very compactly
o Minimize data needed to be read from disk

o Column-oriented storage helps this

Seek time: time it takes the head assembly on the actuator arm to
travel to the track of the disk where the data will be read or written

Bandwidth: the bit-rate of available or consumed information
capacity expressed typically in metric multiples of bits per second

Log-structures

e Only permits
o Appending to files

o Deleting obsolete files
Never updates a file (files are immutable)

Bitcask, SSTables, LSM-trees, LevelDB, Cassandra, HBase,
Luecene, ...

Comparatively recent development

Turn random-access writes to sequential writes on disk

o Higher throughput

Update-in-place

e Treats the disk as a set of fixed-size pages
e Pages can be overwritten
e B-trees is the most common

e Used in "all" major relational databases and many non-relational

Also...

e More complicated index structures

e Databases optimized for keeping all data in memory

With this knowlege

You know the internals of stage engines

Which tool is best suited for your application

Adjust the tuning of a database

A vocabulary to make sense of the documentation

THE END

