
Designing Data‑Intensive Applications

Part 1: Storage and Retrieval

(Which really is chapter 3)



Technology is a powerful force in our society. Data, software,
and communication can be used for bad: to entrench unfair
power structures, to undermine human rights, and to protect
vested interests. But they can also be used for good: to make
underrepresented people’s voices heard, to create
opportunities for everyone, and to avert disasters. This book is
dedicated to everyone working toward the good.



This book has over 800 references to articles, blog posts, talks,
documentation, and more...



Turning the database inside‑out
https://martin.kleppmann.com/2015/11/05/database‑inside‑out‑at‑
oredev.html

https://martin.kleppmann.com/2015/11/05/database-inside-out-at-oredev.html


CAP is broken, and it's time to replace it



Data‑intensive = data is its primary challenge

Quantity of data

Complexity of data

Speed of change

Opposed to compute‑intensive where CPU cycles are the bottleneck



[...]the term “Big Data” is so overused and underdefined that it
is not useful in a serious engineering discussion.



Direction
Companies need to handle huge volumes of data traffic

CPU clock speeds are barely increasing

Multi‑core processors are standard

Networks are getting faster

Services are expected to be highly available



Chapter 3: Storage and Retrieval



A database needs to do two things
when you give it some data, it should store the data

when you ask it again later, it should give the data back to you



World’s simplest database, implemented as two Bash functions

#!/bin/bash

db_set () {
    echo "$1,$2" >> database
}

db_get () {
    grep "̂$1," database | sed -e "s/̂$1,//" | tail -n 1
}



> source db.sh; db_set hello world
> cat database
hello,world
> source db.sh; db_set hello foo
> cat database
hello,world
hello,foo
> source db.sh; db_get hello
foo



Good
Performance ‑ appending to file is very efficient

Using a log (append‑only) internally is common

Bad
Update doesn't remove old data

Read scans entire database
Double the number of records, twice as slow



How do we avoid running out of disk space?

Break the log into segments of a certain size

Make subsequent writes to a new segment file

Perform compaction on the segments



Compaction
Often makes segments much smaller (key is overwritten)

Can be done on multiple segments at once

Segments are never modified

Merging and compactation can run on a background thread

After merging, point to new segment, delete olds segments



Speed up reads: Index



Index
Additional structure derived from the primary data

Add / remove indexes doesn't affect the content

Only affects the performance of queries

Well‑chosen indexes speed up read quries

Usually slows down writes ‑ why not enabled by default

Requires knowledge about application's typical query patterns

Cost / benefit



Hash Indexes
Keep an in‑memory hash map where every key is mapped to a
byte offset in the data file



Hash index
Sounds simplistic but is a viable approach

Essentially what Bitcask (default Riak storage engine) is doing

Offers high‑performance read and writes

Suited when the value for each key is updated frequently

Requires that keys fit into the available RAM



Index & compaction
Each segment has its own in‑memory hash map

Mapping key to offset

On lookup, check the most recent segment's hash map
If not present, pick the second most recent (and so on)

Merging process keeps the number of segments small

Lookup doesn't need to check many hash maps



Improvements
File format

Binary format is faster and simpler

Deletions
Special "tombstone" record

Crash recovery (in‑memory hash map is lost)
Re‑building is possible but slow

Bitcask store a snapshot on disk

Partially written records
Bitcask include checksum

Concurrency control
Common to have one writer thread



Good things
Appending and segment merging are sequential write operations

Much faster than random writes, especially on spinning‑
disk

To some extent preferable on SSD (see book)

Merging old segments avoid data files getting fragmented over
time

Immutable is good ‑ no worries about crash during writes



Problems
Hash map must fit into memory

Hash map on disk is difficult to make performant

Range queries are not efficient
Can't find people between  age > 20 and < 50 

Every key must be looked up in hash map



Sorted String Tables & LSM‑Trees

(SSTables)



Simple change
Require that the sequence of key‑value pairs is sorted by key



Mergesort

Copy the "lowest" key

If identical ‑ keep the value from the most recent segment



Find by key

 handiwork  has unknown exact offset, but must be between
 handbag  and  handsome 

Jump to  handbag  and scan until found (or not)

Still need in‑memory index but it can be small & sparse
One key for every few kb (scanned quickly)



Improve scan on read request
Group into a block and compress it before writing to disk

Each entry of the sparse in‑memory points to the start of a
compressed block

Saves disk space and reduces I/O bandwidth use



Constructing and maintaining SSTables

(Sorted segments)

Maintaining on disk is possible (B‑Trees later)

Maintaining in memory is much easier
Weel known data structures: red‑black trees / AVL trees

Insert key, get them back ordered

Sometimes called "memtable"

Memtable gets bigger than some threshold (few mb)
Write it to disk as an SSTable file

Efficient ‑ already sorted!

While writing to disk, start maintaining a new in memory



Running
To serve read request

check memtable

most recent on‑disk segment

next segment, and so on

From time to time, run compaction in the background

Data is sorted ‑ efficient range queries

Disk writes are sequential ‑ high write throughput

Stratergies for compaction & merge (size‑tierd / leveled)



TL;DR
Size‑tiered compaction, newer and smaller SSTables are
successively merged into older and larger SSTables. In leveled
compaction, the key range is split up into smaller SSTables and
older data is moved into separate “levels,” which allows the
compaction to proceed more incrementally and use less disk
space.



Problem1: on crash the memory is wiped
Maintain separate append‑only log written immediately

Not sorted, only used on restore

When memtable is written to an SSTable, discard log



Problem 2: looking up non‑existing keys
Check memtable and ALL segment files

Use Bloom filters to approximate content of set



B‑Trees
Log‑structured indexes are gaining acceptance ‑ but the most widely
used is the B‑tree



Similarities with SSTables
Keep key‑value pairs sorted by key

Efficient lookup and range queries

Otherwise very different



B‑trees
Break down database into fixed‑size "blocks" or "pages"

Read or write one page at a time

Design corresponds to underlying hardware
Disks are also arranged in fixed size blocks

Each page can be identified using an address or location
One page can refer to another (similar to pointers)



B‑trees



B‑trees
One page is designated the root (lookup starts here)

Page contains everal keys and references to child pages

Each child is responsible for a continuous range of keys

Keys between references indicate the boundaries



Updates
Find the leaf page

Change the value in that page and write page back to disk

References remain valid

Add new key
Find page whose ranges encompasses the new key and add it

If there isn't enough free space
Split into two half‑full pages

Update parent page

Ensures the tree is balanced



Adding key 334



B‑tree with n keys always has a depth of O(log n)

Most databases can fit into a B‑tree that is three or four levels
deep, so you don’t need to follow many page references

A four‑level tree of 4 KB pages with a branching factor of 500
can store up to 256 TB



Making B‑trees reliable
Basic underlying write operation is to overwrite a page with new
data

Assumed that the write does not change location of the page

Some operation requires several pages be overwritten ‑
dangerous on crash

Use write‑ahead log (WAL, a.k.a. redo log)

Append only structure, written to first before te tree itself

Restore B‑Tree with it after crash

Concurrency control (update in place)
Use latches (lightweight locks)

More complicated than logs



B‑tree optimizations
Copy‑on‑write (instead of WAL for crash recovery)

Save space by not storing the entire key
Only need to provide enough information to act as
boundries between key ranges

Packing more keys into a page ‑ high branching factor,
fewer levels

Lay out tree so leaf appear in sequential order on disk
Difficult to maintain when the tree grows

Additional pointer (sibling references) for faster scan

B‑tree variants such as fractal trees borrow some log‑structure
ideas to readuce disk seeks



Comparing B‑Trees & LSM‑trees



Advantages of LSM‑trees
B‑tree index must write all data at least twice

Write‑ahead log (WAL)

Actaul tree page (and perhaps again if pages are split)

B‑tree has overhead for writing an entire page at a time
Some even overwrite twice to avoid partially updated pages
on power failure

(Although log also rewrite several times, write amplification)

Typically higher write throughput (lower write amplification)
Mostly on magnetic drives where sequential writes are fast

Better compression (smaller files on disk)

Less fragmentation (B‑tree split, page space remain unused)



Downsides of LSM‑trees
Compaction can interfear with performance (read & write)

Response time of queries can be high (B‑trees are more
predicatable)

Disk's finite bandwidth is shared between compaction and write

On high throughput, compaction won't keep up

LSM‑trees store multiple copies of the same key

B‑trees has "built in" support for transaction isolation because
locks can be attached to the tree



Secondary indexes
Same thing, but keys are not unique

Store a list of matching row identifiers

Make key unique by appending row identifier



Storing values with the index
Value can be either:

the actual row (document, vertex)

a reference to the row stored elsewhere (heap file)



Heap file
Heap file is common ‑ no duplicate data on secondary indexes

On update (larger value)
Move to a new location in the heap file

all indexes need to be updated

or, forward pointer is added to the heap file



If extra hop to heap file is too expensive
Use clustered index, store row with index (MySQL's InnoDB)

Primary key is always a clustered index

Secondary indexes refer to the primary key (not heap file)

Why Uber switched from Postgres to MySQL
https://eng.uber.com/mysql‑migration/

https://eng.uber.com/mysql-migration/


Covering index
Stores some of a table's columns with the index

Allows some queries to be answered using the index alone



Limitations



Problem 1: Multi‑column indexes

SELECT * FROM restaurants 
WHERE latitude  > 51.4946 AND latitude  < 51.5079
  AND longitude > -0.1162 AND longitude < -0.1004;

B‑tree or LSM‑tree can't answer this query efficiently

Only all resturants in a longitude range (but anywhere between
the North and South pole)



Multi‑column indexes
Single number space‑filling curve (and then regular B‑tree)

Specialized spatial indexes (R‑trees)

2D index



Problem 2: full‑text search, fuzzy index
See book (references)



Or ‑ just keep everything in memory
RAM becoms cheapter (cost‑per‑gigaby argument eroded)

Restart?
Special hardware: battery‑powered RAM

Write a log of changes / periodic snapshot to disk

Performance not due to not reading from disk!
Even disk based may never read from disk (cached blocks)

Real reason: overhead of encoding in‑memory data
structures to disk format

Other possibility ‑ anti‑caching, evict least recently used to disk

Non‑volatile memory (NVM) ‑ keep an eye in the future



Transaction Processing vs Analytics



Typical application
Looks up small number of records by key (indexed)

Records are inserted or updated based on the user's input

Applications are interactive

For end user / customer (via web application)

Latest state of data (current point in time)

Gigabytes to terabytes

Highly available / low latency

OnLine Transaction Processing (OLTP)



Data analytics
Query needs to scan over many records

Only reading a few columns per record

Calculates aggregate statistics ( count ,  sum ,  average , ...)

Bulk import (Extract Transform Load ‑ "ETL") or event stream

For analyst / decision support / report to management

History of events that happened over time

Terabytes to petabytes

Read only copy

OnLine Analytic Processing (OLAP)



ELT ‑ Extract Transform Load



Data warehousing
Historically used the same database

Separate database "data warehouse"

Commonly relational databases

SQL quite flexible for OLTP and OLAP
Graphical query generating tools

"Drill‑down" & "slicing and dicing"

Index algorithm (previously discussed) not very good

Need storage engines optimized for analytics instead



✨ Stars & Snowflakes ❄



Star schema (dimensional modeling)

Fact table at the center



Fact tables
Each row represents an event

The dimensions represent the who, what, where, when, how,
and why of the event

Each row represent an event at a particular time (e.g. purchase)

Maximum flexibility for analysis

Table can become extremely large

Some columns are attributes (e.g. price)

Other columns are foregin key references (dimension tables)

Typically very wide



Snowflake schema
Dimensions are futher broken down into subdimensions

More normalized (than star schemas)

Harder to work with



Column‑Oriented Storage
Fact tables are often 100 columns wide

A typical data warehouse query only accesses 4 or 5

SELECT
  dim_date.weekday, dim_product.category,
  SUM(fact_sales.quantity) AS quantity_sold
FROM fact_sales
  JOIN dim_date    
  ON fact_sales.date_key   = dim_date.date_key
  JOIN dim_product 
  ON fact_sales.product_sk = dim_product.product_sk
WHERE
  dim_date.year = 2013 AND
  dim_product.category IN ('Fresh fruit', 'Candy')
GROUP BY
  dim_date.weekday, dim_product.category;



Column‑Oriented Storage
OLTP databases usually store in row‑oriented fashion

All values from one row are stored next to each other

Document databases are similar

Problematic with previous query ‑ all data needs to be scanned

Solution: store each column together instead!

Also works in nonrelational data models

Reassemble a row is problematic (but rarely needed)





Compression
Column‑oriented storage often good for compression

Many repeating column values (previous image)

Save disk space

Efficient use of CPU cycles

Retail typically have billions of sale but only 100,000 products

Bitmap encoding



Sort order in column storage
Doesn't necessarily matter ‑ easiest to store in insert order

Can't sort each column independently (reconstruct row)
Must sort entire row

Queries often target date ranges ‑ make it the sort key

Several sort keys can be used (telephone book)

Also helps compression (mostly on first sort key)

Store same data in several different ways
Data needs replication anyway



Writing to column‑oriented storage
Writes are more difficult

Update‑in‑place (B‑trees) is not possible

LSM‑treees works
Writes first go in‑memory store

Added to a sorted structured, prepared for disk write

Doesn't matter if it's row‑oriented or column‑oriented



Data cubes & materialized views



Materialized aggregates
Queries often use  count ,  sum ,  avg ,  min  or  max 

Wasteful to crunch if used in many queries

Materialized views ‑ copy of query results written to disk
Needs to be updated (not a "virtual view")

Makes sense in OLAP (not in OLTP)



Data cube / OLAP cube

Grid of aggregates group by different dimensions



Data cube / OLAP cube
Can have many dimensions (e.g. five‑dimensional hypercube)

Hard to imagine but same principle



Advantages
Certain queries become very fast (precomputed)

Disadvantages
Not same flexibility as raw data

E.g. sales from items which cost more than $100 (price isn't
a dimension)

So...
Data warehouses typically keep as much raw data as possible

Aggregates (data cubes) only as performance boost



Summary



OLTP
Typically user‑facing

Hughe volume of requests

Touch a small number of records in each query

Requests records using some kind of key

Storage engine uses and index to find data

Disk seek time is the often the bottleneck



Data warehouse
Analytics systems are less well known

Primary used by business analysts ‑ not end users

Lower volume of queries

Queries are typically very demanding

Column‑oriented storage is increasingly popular solution

Disk bandwidth (not seek time) is bottleneck

Indexes irrelevant

Important to encode data very compactly
Minimize data needed to be read from disk

Column‑oriented storage helps this



Seek time: time it takes the head assembly on the actuator arm to
travel to the track of the disk where the data will be read or written

Bandwidth: the bit‑rate of available or consumed information
capacity expressed typically in metric multiples of bits per second



Log‑structures
Only permits

Appending to files

Deleting obsolete files

Never updates a file (files are immutable)

Bitcask, SSTables, LSM‑trees, LevelDB, Cassandra, HBase,
Luecene, ...

Comparatively recent development

Turn random‑access writes to sequential writes on disk
Higher throughput



Update‑in‑place
Treats the disk as a set of fixed‑size pages

Pages can be overwritten

B‑trees is the most common

Used in "all" major relational databases and many non‑relational



Also...
More complicated index structures

Databases optimized for keeping all data in memory



With this knowlege
You know the internals of stage engines

Which tool is best suited for your application

Adjust the tuning of a database

A vocabulary to make sense of the documentation



THE END


