OTP

Anton Fagerberg

anton.fagerberg@jayway.com

mailto:anton.fagerberg@jayway.com

What is OTP?

OTP as a complete development environment for concurrent

programming.

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

OTP is

e The Erlang interpreter and compiler

Erlang standard libraries

Dialyzer, a static analysis tool
e Mnesia, a distributed database

Erlang Term Storage (ETS), an in-memory database
e A debugger
An event tracer

e A release-management tool

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

OTP Behaviors

e Design patterns for actors
e Provide generic pieces

Actor

Concurrency primitive

Each actor is a process

Message passing (only interaction)

No shared information (memory) with other actors

Haﬂhou

[Swaien

S NGRS
\

£ Tmaitbox

i ; Internal
& b State

i

http://www.brianstorti.com/the-actor-model/

http://www.brianstorti.com/the-actor-model/

What actors do

When an actor receives a message, it can do one of these 3 things:

1. Create more actors.
2. Send messages to other actors.
3. Designates what to do with the next message.

http://www.brianstorti.com/the-actor-model/

http://www.brianstorti.com/the-actor-model/

Detour into Object Orientation

Can write

Is yellow 7 l ' Is white
Dog Sheep

Can run

Can run (faster)

http://www.codercaste.com/2011/01/12/what-is-object-oriented-
programming-and-why-you-need-to-use-it/

http://www.codercaste.com/2011/01/12/what-is-object-oriented-programming-and-why-you-need-to-use-it/

Alan Kay

Coined the term "object orientation"

He is best known for his pioneering work on object-oriented
programming and windowing graphical user interface design.

The Early History of Smalltalk

March 1993

http://stephane.ducasse.free.fr/FreeBooks/SmalltalkHistoryHOPL .pdf

http://stephane.ducasse.free.fr/FreeBooks/SmalltalkHistoryHOPL.pdf

The Early History of Smalltalk

printed on t-shirts), and severely restricted the kinds of publications that could be made. This wa
particularly disastrous for LRG, since we were the “lunatic fringe” (so-called by the other computer
scientists), were planning to go out to the schools, and needed to share our ideas (and programs)
with our colleagues such as Seymour Papert and Don Norman.

Executive “X” apparently heard some harsh words at Stamford about us, because when he
returned around Christmas and found out about the interim Dynabook, he got even more angry and
tried to kill it. Butler wound up writing a masterful defence of the machine to hold him off, and he
went back to his “task force”.

Chuck had started his “bet” on November 22, 1972. He and two technicians did all of the machine
except for the disk interface which was done by Ed McCreight. It had a ~500,000 pixel (606x808)
bitmap display, its microcode instruction rate was about 6MIPs, it had a grand total of 128k, and the
entire machine (exclusive of the memory) was rendered in 160 MSI chips distributed on two cards. It
was beautiful (Thacker,1972, 1986]. One of the wonderful features of the machine was “zero-over-
head” tasking, It had 16 program counters, one for each task. Condition flags were tied to interesting
events (such as “horizontal retrace pulse”, and “disk sector pulse”, etc.). Lookaside logic scanned the
flags while the current instruction was executing and picked the highest priority program counter to
fetch from next. The machine never had to wait, and the result was that most hardware functions
(particularly those that involved i/o (like feeding the display and handling the disk) could be
replaced by microcode. Even the refresh of the MOS dynamic RAM was done by a task. In other
words, this was a coroutine architecture. Chuck claimed that he got the idea from a lecture I had
given on corountines a few months before, but 1 remembered that Wes Clark’s TX-2 (the Sketchpad
machine) had used the idea first, and 1 e e AR e T 7
probably mentioned that in the talk.

In early April, just a little over three
months from the start, the first Interim
Dynabook, known as ‘Bilbo,” greeted the
world and we had the first bit-map pic-
ture on the screen within minutes: the
Muppets’ Cookie Monster that I had
sketched on our painting system.

Soon Dan had bootstrapped Smalltalk
across, and for many months it was the
sole software system to run on the
Interim Dynabook. Appendix | has an
“acknowledgements” document I wrote
from this time that is interesting in its

and Cookie
Monstar®, the first
) graphics it dis-
allocation of credits and the various pri- M -) played.

April, 1973

orities associated with them. My $230K
was enough to get 15 of the original pro-
jected 30 machines (over the years some 2000 Interim Dynabooks were actually built). True to
Schopenhauer’s observation, Executive “X" now decided that the Interim Dynabook was a good idea
and he wanted all but two for his lab (T was in the other lab). I had to go to considerable lengths to
get our machines back, but finally succeeded.
By this time most of Smalltalk’s schemes had been sorted b o

. : P . initial I bjects communicate by sending and
out into six main ideas that were in accord with the initial £ roceiving messages (in terms of objects)
premises in designing the interpreter. The first three princi-)))

4 s i 3. Objects have their own memory (in terms of|

ples are what objects “are about”—how they are seen and objects)
use.d from “the cutsish”. Thees did not mqm.n any modlfi- 4. Every ubject is an instance of a class (which
cation over the years. The last three—objects from the " " o0 object)
msade.—were tinkered with in every version of Smalltalk 5. The class holds the shared behavior for its
(and in subsequent oor designs). In this scheme (1 & 4) I ciances (in the form of objects in a pro-
imply that classes are objects and that they must be § gram tist)
instances of themself. (6) implies a Lisplike universal syntax, b 1 wvat s program list, control is passed to
but with the receiving object as the first item followed by the | the first object amd the remainder is treated
message. Thus ¢; <- de (with subscripting rendered as "o”] s its message
and multiplication as “*”) means:

1. Everything i3 an object

Alan C. Kay, The Early History Ot Smaltalk 20

¢ loi<-d®
The cis bound to the receiving object, and al] ofo i <- d* is the message to it. The message is mad
L‘|p of a literal token “.”, an expression to be evaluated in the sender’s context (in this case 1), anoth .
htelrnl token <-, followed by an expression to be evaluated in the sender’s context (d%) S'u‘:ce ”Lls:':
pairs are made from 2 element objects they can be indexed more simply: ¢ hd, c ti, and ¢ hd <- foo, etc

Simple expressions like a+b and 3+4 seemed more troublesome a st. Did it rea
; t first,
. it re lly make sense

teceiver
a I +b
3 I+ 4

It seemed silly if only int i : .
oy y y integers were considered, but there are many other metaphoric readings of
“kitty” |+ "kat” => “kittykat”

345 l+4 =7 8 9
678 101112

This led to a style of finding generic behaviors for messa “ ism” i id
‘ i ge symbols. “Polymorphism” is the official
term (I believe derived from Strachey), but it is not really apt as its original meaning applied only to
functions that could take more than one type of argument. An example class of objects in Smalltalk-
72, such as a model of cons pairs, would look like:

to likeLoGo, except makes 2
class from its message

ISNEW s true if a new instance|
has been created

[temporary variable] Enuu nee varia b!t?l

to Parr b1 ht “b s temp. h, fare internal § vars”
(swew = (ch. 1) “cons—if no explicit return is
[mu any object not false acts .ul Ohd »(O<- & (M:h)Ak) 'repl'mind :f aiven st retumed
e o = (0<- = (:1)N) “replacd and cdr”

SisPair = (Mrue)

Sprint = ('(print. SELF mprint)

Smprint s (k print, ¢ SNl » () primt) tisPair » (¢ mprint) » ' print. t print. ') print)
Slength = (tisPair » (714t length) 1))

true = mn will evaluate m and
escape from sur-
rounding ()

::aduhr._!:dnm p.]m of :@m;f @ eyeball looks to see if its | [sendback returns 1 |- “statement separator
inds result to the vari- message is a literal token i] Vi i]
able in its message in the message stream s ender 2 Dloring i

Smcelcontm[is passed to the class before any of the rest of the message is considered—the class
Ean‘deude not to receive at its discretion—complete protection is retained. Smalltalk-72 objects are
shiny” and impervious to attack. Part of the environment is the binding of the SENDER in the “mes-
senger object” (a generalized activation record) which allows the receiver to determine differential
privileges (see Appendix If for more details). This looked ahead to the eventual use of Smalltalk asa
xtwork O5 (see [Goldstein & Bobrow 1980]), and I don’t recall it being used very much in Smalltalk-

One of the styles retained from Smalltalk-71 was the comingling of function and class ideas. In
other works, Smalltalk-72 classes looked like and could be used as functions, but it was easy to pro-

r:lluce]aln instance (a kind of closure) by using the object 1svEw. Thus factorial could be written “exten-
sionally” as:

to fact n (if :n=0 then 1 else n*fact n-1)
or “intensionally”, as part of class integer:
(.0l e (Nen=t) w (1) (n-1)!)

Of course, the whole idea of Smalltalk (and 0oP in general) is to define everything intensionally.
And th'.s was the direction of movement as we learned how to program in the new style. I never
liked this syntax (too many parentheses and nestings) and wanted something flatter and more gram-

The first three principles are what objects "are about"

Ll LTl Bv (LR MR LS I LS I'E-II.ELI.\.‘.‘I Lr

1. Everything is an object

2. Objects communicate by sending and

receiving messages (in terms of objects)

1. Everything is an object
2. Objects communicate by sending and receiving messages
3. Objects have their own memory

Back to OTP

OTP Behaviors

e GenServer
o Implementing the server of a client-server relationship
e Supervisor
o Implementing supervision functionality
e Application
o Working with applications and defining application
callbacks

Elixir is creating more - and you can implement your own!

GenServer (Generic Server)

Abstraction of client / server functionality.

GenServer

Provides

e Start (spawn) server process

e Maintain state in server

e Handle requests, send responses
e Stopping server process

e Naming conventions

e Handle unexpected messages
Consistent structure

GenServer

Leaves you to define

o State to initialize
 What messages to handle (requests)

When to reply (async / sync)

What messages to reply with
e What resources to clean-up on termination

def loop(results \\ [], results_expected) do
receive do

{:0k, result} —
new_results = [result]|results]
loop(new_results, results_expected)

—>
loop(results, results_expected)
end
end

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

def handle _call({:location, location}, _from, state) do
new_state = update_stats(stats, location)
{:reply, "hello!", new_state}

end

Sequential programs

e Typically one main process
e Program defensively
e try & catch

e if err '= nil

Let it crash!

Link

e Actors can link themselves to other actors
e (or monitor them)

LINK

&—@
(A) e ot =z

http://learnyousomeerlang.com/errors-and-processes

http://learnyousomeerlang.com/errors-and-processes

Supervisors

e Observe other processes
e Take action when things break
e GenServer makes it easy to be supervised

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

Let it crash

e Delegate error detection and handling to other actors
e Do not code defensively

Restart stratergies

e one for one
o If a process dies, only that process is restarted.
e one for all
o All process in the supervision tree dies with it.
e rest for one
o Processes started after the failing process are terminated.
e simple one for one
o Factor method, many instances of same process.

Also

e max restarts
e max seconds

Pooly

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

Observer

| NON rest_hello_world_example@127.0.0.1
- System Load Charts = Memory Allocators | aesllleciilolgispy Processes Table Viewer Trace Overview
cowboy —)
<0.29.0> | user | 1 user_drv J : <0.32.0> '
ranch

rest_hello_world
runtime_tools

(<0.9.0> o <0.10.0> }{ kernel_sup

<0.34.0>

code_server

file_server_2

global_group

global_name_server

kernel_safe_sup

net_sup

iy

<0.16.0>

<0.17.0>

-(i net_gethost_native_sup

inet_get host_native)

timer_server

auth

erl_epmd

net_kernel

rest_hello_world_example@127.0.0.1

standard_error_sup

L

standard_error)

https://tkowal.wordpress.com/2016/04/23/observer-in-erlangelixir-
release/

https://tkowal.wordpress.com/2016/04/23/observer-in-erlangelixir-release/

One of the killer features of the Erlang VM is distribution —that
IS, the ability to have multiple Erlang runtimes talking to each
other. Sure, you can probably do it in other languages and
platforms, but most will cause you to lose faith in computers
and humanity in general, just because they weren’t built with
distribution in mind.

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

Location transparent clusters!

Node connections are transitive

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

Distribution & fault tolerance

e Failover - node crashes, another node takes over application
o Takeover - higher priority node takes over application

huck Norris

iex(afhost) > Chucky.fact

afhost bihost c@hosat
Chuck Morris can draw a
circle with a ruler . . .

All requests are —
handled by a@host

Master node Failover nodes

iex(bfhoat) > Chucky.fact

Chuck Horris won a staring

contest against a mirror

afhost béhost cihost

@9 @®

All requests are
handled by a@haost
by 2@ Master node Failover nodes
jex(cfhost) > Chucky.fact
Chuck Norris once caught
a cold...and killed it}
afhost béhost cfhost

All requests are —"'/'| | L |

handled by a@host

Master node Failover nodas

b@host c@host

a@host blows up!
But, five seconds later...
—_‘x\‘__. i

Master node

Failover nodes

jex{b@host) > Chucky.fact

k Norris can burn fire

E JCL)

...b@host takes over.
All requests are now

handled by b-@host.

Master node Failover nodes
iex [c@host) > Chucky.fact
lorris
All requests are
handled by b@host __"“‘-\H__, e g SR
L
Master node Failover nodes

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

GenStage

GenStage is a new Elixir behaviour for exchanging events with
back-pressure between Elixir processes.

http://elixir-lang.org/blog/2016/07/14/announcing-genstage/

http://elixir-lang.org/blog/2016/07/14/announcing-genstage/

GenStage

Not only that, we want to provide developers interested in
manipulating collections with a path to take their code from
eager to lazy, to concurrent and then distributed.

http://elixir-lang.org/blog/2016/07/14/announcing-genstage/

http://elixir-lang.org/blog/2016/07/14/announcing-genstage/

Types

public void onReceive(Object message) throws Exception {
if (message instanceof String) {
getSender().tell(message, getSelf());
} else {
unhandled(message) ;
5
I3

Akka Typed

http://doc.akka.io/docs/akka/current/scala/typed.html

http://doc.akka.io/docs/akka/current/scala/typed.html

Success typing (Dialyzer)

defmodule Cashy.Bugl do

def convert(:sgd, :usd, amount) do
{:0k, amount *x 0.70}
end

def run do
convert(:sgd, :usd, :one_million_dollars)
end

end

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

Success typing (Dialyzer)

@spec convert(currency, currency, number) :: number
def convert(:sgd, :usd, amount) do

amount x 0.70
end

Benjamin Tan Wei Hao. “The Little Elixir & OTP Guidebook.”

QuickCheck & Concuerror

The Little Elixir & OTP Guidebook

Benjamin Tan Wei Hao

Elixir g TP

